Orthogonal Bases for Multi-Output Gaussian Processes

Wessel Bruinsma

University of Cambridge, CBL

29 October 2021

Contents

- I. Introduction
- II. The Linear Mixing Model
- III. The Orthogonal Linear Mixing Model
- IV. Arbitrary Likelihoods
- V. (Preliminary) Conclusions

Introduction

- A powerful and popular probabilistic modelling framework for nonlinear functions.
- Definition: $f \sim \mathcal{GP}(m,k)$ if, for all $(t_1,\ldots,t_n) \in \mathcal{T}^n$,

$$\begin{bmatrix} f(t_1) \\ \vdots \\ f(t_n) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} m(t_1) \\ \vdots \\ m(t_n) \end{bmatrix}, \begin{bmatrix} k(t_1, t_1) & \cdots & k(t_1, t_n) \\ \vdots & \ddots & \vdots \\ k(t_n, t_1) & \cdots & k(t_n, t_n) \end{bmatrix} \right)$$

• Inference and learning: ${\cal O}(n^3)$ time and ${\cal O}(n^2)$ memory.

Multi-Output Gaussian Processes

- Multi-output GPs go long way back (Matheron, 1969).
- Vector-valued mean function m and matrix-valued kernel K:

$$m: \mathcal{T} \to \mathbb{R}^{p}, \quad K: \mathcal{T}^{2} \to \mathbb{R}^{p \times p}, \quad \stackrel{\text{number of}}{\uparrow} \stackrel{\text{number of}}{}_{\text{outputs}}$$
$$m(t) = \begin{bmatrix} \mathbb{E}[f_{1}(t)] \\ \vdots \\ \mathbb{E}[f_{p}(t)] \end{bmatrix}, \quad \stackrel{\text{input space}}{}_{\text{(time)}}$$
$$K(t, t') = \begin{bmatrix} \operatorname{cov}(f_{1}(t), f_{1}(t')) & \cdots & \operatorname{cov}(f_{1}(t), f_{p}(t')) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(f_{p}(t), f_{1}(t')) & \cdots & \operatorname{cov}(f_{p}(t), f_{p}(t')) \end{bmatrix}$$

• Inference and learning: $O(n^3p^3)$ time and $O(n^2p^2)$ memory.

• Often alleviated by exploiting structure in K.

The Linear Mixing Model

Fixed Basis with Varying Coefficients

3/16

The Linear Mixing Model

"mixing matrix"

Definition (Linear Mixing Model)

 $x \sim \mathcal{GP}(0, K(t, t')), \quad f(t) \mid H, x = \overset{\bullet}{Hx}(t), \quad y \mid f \sim \mathcal{GP}(f(t), \Lambda).$

"latent processes"

• f is p-dimensional, x is m-dimensional, and H is $p \times m$.

• Often $p \gg m$.

- Equivalently, $y \sim \mathcal{GP}(0, HK(t, t')H^{\mathsf{T}} + \Lambda)$.
- Generalisation of FA to time series setting.
- Fixed spatial correlation: $\mathbb{E}[f(t)f^{\mathsf{T}}(t)] = HH^{\mathsf{T}}$ if K(t,t) = I.
- Instantaneous mixing: f(t) depends on x(t') only for t = t'.
- Inference and learning: $O(n^3m^3)$ time and $O(n^2m^2)$ memory.

Exploiting the Low-Rank Structure

Proposition

Let T be the
$$(m \times p)$$
-matrix $(H^{\mathsf{T}}\Lambda^{-1}H)^{-1}H^{\mathsf{T}}\Lambda^{-1}$. Then
conditioning $y \mid f \sim \mathcal{GP}(f(t), \Lambda)$ on data $Y: O(n^3p^3)$
 \iff
conditioning $\underbrace{Ty}_{u} \mid f \sim \mathcal{GP}(\underbrace{Tf(t)}_{x(t)}, T\Lambda T^{\mathsf{T}})$ on data $TY: O(n^3m^3)$.
• $T:$ "y-space" \rightarrow "x-space".
• $Ty = \arg \min_{x} \|\Lambda^{\frac{1}{2}}(y - Hx)\|_{2}$.
 $Y \xrightarrow{\text{inference}}_{O(n^3p^3)} p(y \mid Y)$
 $\downarrow TY \xrightarrow{\text{inference}}_{O(n^3m^3)} p(u \mid TY)$

5/16

What if $T\Lambda T^{\mathsf{T}}$ were diagonal? Then inference decouples into independent problems!

The Orthogonal Linear Mixing Model

Fixed Orthogonal Basis with Varying Coefficients

6/16

Definition (Orthogonal Linear Mixing Model)

With K(t,t) = I, $H = US^{\frac{1}{2}}$, and $\Lambda = \sigma^2 I + HDH^{\mathsf{T}}$,

 $x \sim \mathcal{GP}(0, K(t, t')), \quad f(t) \,|\, H, x = Hx(t), \quad y \,|\, f \sim \mathcal{GP}(f(t), \Lambda).$

- Generalisation of PPCA (Tipping and Bishop, 1999) to time series setting.
- Like GPFA (Yu et al., 2009), but orthogonality built in.
- General spatial correlation: $\mathbb{E}[f(t)f^{\mathsf{T}}(t)] = USU^{\mathsf{T}}$.

 \Rightarrow Suggests way to initialise U and S.

Inference and Learning

• Image of noise: $T\Lambda T^{\mathsf{T}} = \sigma^2 S^{-1} + D$. Diagonal!

- Inference and learning: O(n³m) time and O(n²m) memory.
 ⇒ Linear scaling in the number of degrees of freedom!
- Trivially compatible with one-dimensional scaling techniques.

Inference and Learning (2)

Proposition

The evidence $\log p(Y)$ is convex in U.

Arbitrary Likelihoods

Recapitulation of the OLMM

10/16

+ Computationally efficient

- + Linear scaling in number of degrees of freedom m
- + Trivially compatibly with one-dimensional scaling techniques
- + Convex in U
- + Easy to implement
- \pm Expressivity
 - \pm Restricted to orthogonal bases
 - Linear correlations
- Cannot handle missing data
- Cannot handle imhomogeneous observation noise

Goal: arbitrary p(y | f) whilst retaining computational efficiency.

Application: Neural Networks with Time-Varying Weights

11/16

Task: predict mapping $z\mapsto \phi(z,t)$ that slowly varies with time.

- ???
- Economics?

Generative model:

$$w \sim \text{OLMM}, \quad \phi(z,t) \mid w = \text{NN}_{w(t)}(z).$$

Inference: VI with an OLMM as computationally efficient q.

Variational Inference

 $p(y, f) = p(y \mid f) p(f).$

12/16

Prior:

Approximate posterior (Johnson et al., 2016):

$$q(f) = \frac{1}{Z} p(f) p(\hat{y} \mid f, \hat{\Lambda}) \,.$$

likelihood "conjugate" to the OLMM

ELBO:

- + Pseudo-evidence $\log Z$ and approximate posterior q(f) cheap
- + Easy to implement
- $\pm \ \operatorname{Prior} \, p(f)$ shared with q(f)
- For k pseudo-points, O(kp) parameters

Variational Inference, Take 2

13/16

Approximate posterior:

$$q(f) = \frac{1}{Z} p(f) p(\hat{y} \mid f, \hat{\Lambda})$$

= $\frac{1}{Z} p(f) p(\underline{T}\hat{y} \mid f, \underline{T}\hat{\Lambda}\underline{T}^{\mathsf{T}}) = \frac{1}{Z} p(f) p(\hat{u} \mid f, \hat{D}).$

ELBO:

$$\mathcal{L}(\hat{u}, \hat{D}) = \log Z + \mathbb{E}_{q(f)}[\log p(y \mid f) - \log p(\hat{u} \mid f, \hat{D})].$$

+ For k pseudo-points, O(km) parameters

Naturally Mean Field

- $q(f) \propto p(f) p(\hat{u} \mid f, \hat{D})$: EP-style approximation in VI setting.
- Consider traditional pseudo-point method (Titsias, 2009):

$$q(f) = \int p(f \mid \hat{f})q(\hat{f}) \,\mathrm{d}\hat{f}$$

= $\int p(f \mid \underbrace{T\hat{f}}_{\hat{x}})q(T\hat{f}) \,\mathrm{d}T\hat{f} = \int p(f \mid \hat{x})q(\hat{x}) \,\mathrm{d}\hat{x}.$

- Equivalent if $q(\hat{x}_i) = \mathcal{N}(\hat{u}_i, (K_{x_i}^{-1} + \hat{D}_i^{-1})^{-1}).$
- When does $q^*(\hat{x})$ factorise over the latent processes? $\prod_{i=1}^m q^*(\hat{x}_i) \stackrel{?}{=} q^*(\hat{x}) = e^{-\mathcal{L}^*} p(\hat{x}) \exp\langle \log p(y \mid x) \rangle_{p(x \mid \hat{x})}.$
 - OLMM!
 - 2 $y | x \sim \mathcal{GP}(H\phi(x(t)), \Lambda)$ with ϕ a pointwise nonlinearity.

(Preliminary) Conclusions

(Preliminary) Conclusions

- Orthogonal basis decouples inference into independent problems.
- OLMM can (maybe) function as a computationally efficient prior / approximate posterior in larger spatio-temporal models.
- Experiments on real-world data!

Outstanding Questions

• Fixing a computational budget, how does OLMM compare?

16/16

- How restrictive is the orthogonality assumption?
 - For a given LMM, how close is the closest OLMM?
- When is *H* identifiable? Connection to ICA?
- How does learned basis compare to other methods, e.g. PCA?
 - Can pointwise nonlinearity ϕ improve learned basis?
- Can orthogonality alleviate downsides of mean-field VI?

These slides: https://wesselb.github.io/pdf/olmm.

Appendix

References

- Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R., & Adams, R. P. (2016). Composing graphical models with neural networks for structured representations and fast inference. arXiv preprint arXiv:1603.06277.
- Matheron, G. (1969). Le krigeage universel. *Cahiers du centre de morphologie mathématique de fontainebleau*. École nationale supérieure des mines de Paris.
- Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B, 61(3), 611–622.
- Titsias, M. K. (2009). Variational learning of inducing variables in sparse Gaussian processes (D. van Dyk & M. Welling, Eds.). Artificial Intelligence and Statistics, 12, 567–574. http: //proceedings.mlr.press/v5/titsias09a/titsias09a.pdf

References (2)

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity (D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou, Eds.). Advances in Neural Information Processing Systems, 21, 1881–1888. http://papers.nips.cc/paper/3494-gaussianprocess-factor-analysis-for-low-dimensional-singletrial-analysis-of-neural-population-activity.pdf